Determination of Soil Texture	
Soil Texture	
Class Diameter Dominant Minerals Sand (2.0 – 0.05 mm) Quartz Silt (0.05 – 0.002 mm) Quartz /Feldspars/mica Clay (<0.002 mm)	
Importance of Soil Texture (Distribution of particle sizes) Soil Porosity	
Particle Surface Area	

Texture and Pore Sizes

Large particles yield large pore spaces Small particles yield small pore spaces

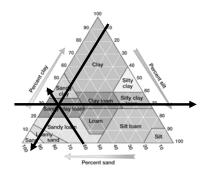
Water moves rapidly and is poorly retained in Coarse-textured sandy soils.

Water moves slowly and is strongly retained in Fine-textured, clayey soils.

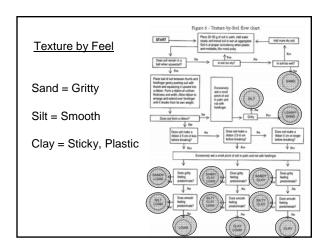
Surface Area

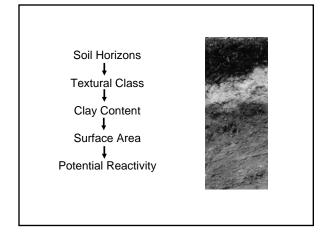
units

Specific Surface Area = Surface Area

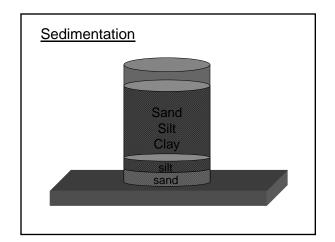

cm² g

Interface with the environment




microorganisms

60% sand, 10% silt, 30% clay


Sand <10% Loamy sand 10 - 2 Sandy loam 15 - 2 Sandy clay loam 20 - 3 Sandy clay 35 - 5 Clay > 50%	5% .0% .5% Florida Soils .5%
---	---------------------------------------

Laboratory Analysis of Soil Texture

Laboratory Analysis Sedimentation – Sand, Silt, and Clay Fraction drag gravity

Quantifying Sedimentation Rates

Stokes' Law

Velocity V(cm/s) =
$$\frac{g (dp-d_L) D^2}{18u}$$

$$\begin{split} g &= \text{gravity} \\ d_p &= \text{density of the particle} \\ d_L &= \text{density of the liquid} \end{split}$$
 $\boldsymbol{\mathrm{u}}_{}$ = viscosity of the liquid

 $K = 11,241 \text{ cm}^{-1} \text{ sec}^{-1}$

 $V = K D^2$

Stokes' Law

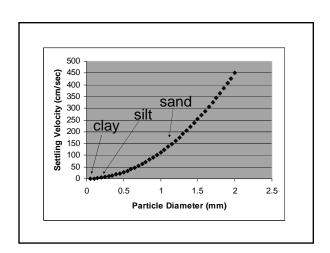
$$V = K D^2$$

 $K = 11,241 \text{ cm}^{-1} \text{ sec}^{-1}$

Sand:
$$D = 1 \text{ mm} \rightarrow 0.1 \text{ cm}$$

$$V = 11,241 \times (0.1)^2$$
 $\frac{1}{\text{pm'} \cdot \text{sec}} \times \text{cm}^2$

= 112.4 cm/sec

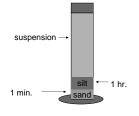

$$V = K D^2$$

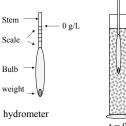
 $K = 11,241 \text{ cm}^{-1} \text{ sec}^{-1}$

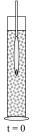
clay:
$$D = 0.002 \text{ mm} \longrightarrow 0.0002 \text{ cm}$$

$$V = 11,241 \times (0.0002)^2$$

$$\frac{1}{\text{cm}\cdot\text{sec}}\quad X\quad \text{cm}^2$$


= 0.00045 cm/sec


Sedimentation


The density of a soil suspension decreases as particles settle out.

1 minute 2 hours Sand settles out Silt settles out

Hydrometer Method

 $t = 1 \min$

Pure distilled water $(18^{\circ} \text{ C}) = 0 \text{ g/L}$

Hydrometer Method

Add 40 g soil to 1 liter of water

 $\label{eq:Time of Sec} \begin{aligned} & \text{Time = 0 sec} & \text{density = 40 g/L} \\ & \text{Time = 1 min.} & \text{density = 10 g/L} \end{aligned}$

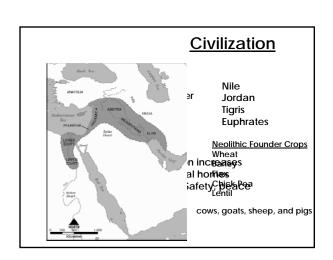
Sand settled = 40 g- 10 g= 30 g

Sand (%) = $\frac{30 \text{ g}}{40 \text{ g}}$ sand = 0.75 = 75%

Hydrometer Method

Time = 2 hrs density = 4 g/L

What is being measured?


Clay content = 4 g

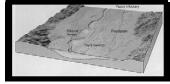
Clay % = $\frac{4 \text{ g clay}}{40 \text{ g soil}}$ = 0.10 = 10%

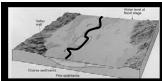
Silt % = 100% - (75% + 10%) 100% - 85% = 15 %

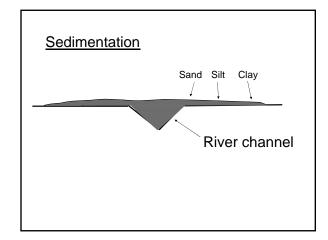
Hydrometer Method Sand = 75% Silt = 15% Clay = 10% Sandy Loam

Texture and Civilization?

Flooding


Sand 2.0-.05 mm Silt 0.05 - 0.002 mm Clay < 0.002 mm _

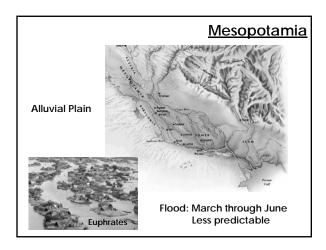



Stokes' Law: V = kD²

K = 11,241 cm⁻¹ sec⁻¹

Flooding

Egypt


Khemia signifies black earth: flood deposition

poli ingrad	Carro a	Haghdad NUMATI	
LIBYA	ECTIFIC	SAUDI	В
CHAD NO parena	Omeans Kharao S U I	BRIDEA CO	
Mension CENTING APPRO SERVICIA BANGUS	- Land	ETHIOPIA	V
CENTRAL APPOC	EP PRINTE	HENYA Nameda Alfaranjar	V

Blue Nile

White Nile

Flood peaks in mid-September

Agriculture and Irrigation

<u>Irrigation</u>

Canals Dikes Weirs Reservoirs channels

Early Mesopotamia

<u>Enki</u>

- water

Sumerian deity of Water (lord of the watery abyss)

Creation myth

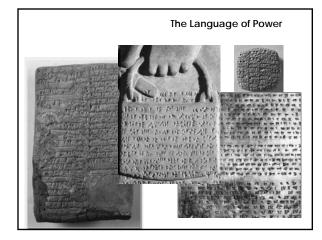
The gods were dredging the rivers, were piling up their silt on projecting bends-- and the gods lugging the clay began complaining

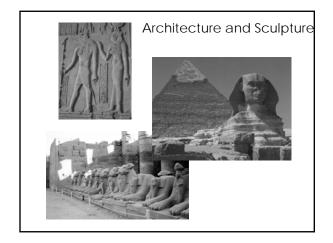
Symbols: goat, fish

History and Soil Texture (clay and stone)

Stone and Clay

Egypt ---- Stone


Sumer ---- Clay



Sumerian receipt

hieroglyphics

