Homework III: The State Soil of Florida

Posted on website

5 bonus points

Type all answers

Soil Organisms, Biology, and Nutrients

Organic Matter and Soil Biology

Soil Organic Matter

Accumulation of partially disintegrated and decomposed plant and animal residues plus biomass.

1-5% (by weight) in a typical, well-drained mineral soil

Transitory soil constituent (hours to 100s of years)

Requires continual addition to maintain O.M. levels.

Constantly being broken down by soil micoorganisms

Release/recycling of important plant nutrients

Soil Organisms

Basic Classification of Organisms

Food Oxygen Demand Energy Source

Based on food: live or dead

Herbivores

-Eat live plants Insects, mammals, reptiles

Detritivores

- Eat dead tissues:
 Fungi, bacteria & actinomycetes

Predators

-Eat other animals Insects, mammals, reptiles

Based on energy & C source

Autotrophic (CO₂)

- Solar energy (photoautotrophs)
 Chemical reaction w/inorganic elements
- N, S, & Fe (chemoautotrophs)

Heterotrophic

From breakdown of organic matter (Carbon)Most Numerous

Quantification of Soil Organisms

Quantification of Soil Organisms

Three Criteria

- Numbers of organisms
 - Extremely numerous
 - 1,000,000-1,000,000,000 /g soil
 - 10,000 species /g soil
- Biomass
 - 1-8% of total soil organic matter
- Metabolic activity

 - Respiration: CO₂
 Proportional to # & biomass

Organisms	#/g soil	Biomass (g/m ²)			
Microflora Bacteria Actinomycetes Fungi	10⁸ -10 9 10 ⁷ -10 ⁸ 10 ⁵ -10 ⁶	40-500 40-500 100-1,500			
			Algae	10 ⁴ -10 ⁵	1-50
			Fauna		
			Protozoa	10 ⁴ -10 ⁵	2-20
Nematodes	10 - 10 ²	1-15			
Mites	1 -10	1-2			
Earthworms	1-10	10-150			

Earthworms

- Abundance of earthworms
 - 10-1,000/m³
 - 3,000 species

- Benefits of earthworms
 - soil fertility by producing cast (concentration of nutrients)
 - aeration & drainage
 - size & stability of soil aggregates

Soil Fungi

Yeasts, molds, mushrooms

10 - 100 billion/m² Cell with a nuclear membrane and cell wall Most versatile & most active in acid forest soils Tolerate extremes in pH (bacteria do not)

Mycorrhizae symbiosis Association between fungi & plant root Increased SA (up to 10 times) Increased nutrient uptake, especially P

Symbiosis

- Fungi provide nutrients
- Plant root provides carbon
- Ectomycorrhiza
 Root surfaces and cortex in forest trees
- Endomycorrhiza Penetrate root cell walls agronomic cropsincorn, cotton, wheat, & rice

Oxygen, moisture, temperature, O.M., pH

Benefits of Soil Organisms

OM decomposition The most significant contribution N, S, & P nutrients

 $\begin{array}{l} \mbox{Elemental transformations} \\ N \; (NH_4^+ \Rightarrow NO_3^-) \\ S \; (S \Rightarrow SO_4), \\ Fe \; (Fe^{2+} \Leftrightarrow Fe^{3+}) \\ Mn \; (Mn^{2+} \Leftrightarrow Mn^{4+}) \end{array}$

Nitrogen fixation $(N_2 \! \Rightarrow \! NH_4^*)$ Algae: wetland Bacteria: legumes

Breakdown toxic organics (bioremediation) Pesticide degradation: DDT

Oil & gasoline degradation

Soil Organic Matter

•Carbon •Hydrogen •Oxygen •Phosphorus •Nitrogen •Sulfur

