

--- Relating soil - landscape - vegetation - parent material.

- Describing and classifying soils.
 Determining seasonal high water tables.
 Estimating erosion, infiltration, permeability, etc.
 Interpreting suitability for waste disposal, etc.

Diagnostic Surface Horizons

Epipedons Mollic Umbric Ochric Histic Melanic Plaggen Anthropic

Umbric Epipedon

Meets all criteria of the Mollic epipedon, except base saturation < 50%

Chemically different than Mollic

Melanic Epipedon

Similar in properties to Mollic

Formed in volcanic ash

Lightweight, Fluffy

Plaggen Epipedon

Produced by long-term (100s yrs.) manuring

Old, human-made surface horizon

Absent in U.S.

> 50 cm thick

Diagnostic Surface Horizons

Epipedons

Mollic Umbric Ochric	Very common
Histic Melanic	"specialized"
Plaggen Anthropic	Human-derived

Diagnostic Sub-surface Horizons

Subsurface Hor	izons	Formation Translocation Transformation
Organic Matter	Clays	Oxides
Dark colors Metals (Fe, Al)	smectites Kaolinite	Iron Aluminum
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Also: sal	ts, carbonates, sulfides

Diagnostic Subsurface Horizons

Albic (white) Horizon

Light-colored (Value > 6 moist) Elluvial (E master horizon*) Low in clay, Fe and Al oxides Generally sandy textured Low chemical reactivity (low CEC) Typically overlies Bh or Bt horizons

Diagnostic Subsurface Horizons

Argillic Horizon

Illuvial accumulation of silicate clays Illuvial based on overlying horizon Clay bridges Clay coatings

Diagnostic Subsurface Horizons

Argillic Horiz	on <u>Ka</u>	andic Horizon
High	Activity of Clays	Low
Necessary	Illuviation of clay	Not Necessary

Diagnostic Subsurface Horizons

Spodic Horizon

- Illuvial accumulation of organic matter and aluminum (+/- iron)
- Dark colored (value, chroma < 3)
 Low base saturation (acidic)
- Formed under humid acid conditions

Diagnostic Subsurface Horizons

Oxic horizon

• Highly weathered (high temperatures, high rainfall)

- High in Fe, Al oxides
- High in low-activity clays (kaolinite < smectite < vermiculite

Diagnostic Horizons

Epipedons Mollic Umbric Ochric Histic

Melanic

Plaggen

Anthropic

Albic Kandic Argillic Spodic

Subsurface

Oxic

Soil Taxonomy

Diagnostic Epipedons Diagnostic Subsurface horizons Moisture Regimes Temperature Regimes

Check Your E-mail