Soil Acidity Summary

Acidity is a master variable Acidity affects the availability of nutrients Acidity affects microbial activity Acidity dictates and reflects vegetation type Acidity impacts the mobility of pollutants (solubility, adsorption)

Summary 8 1

- 1. Low pH = acidic conditions, high H⁺ concentration
- 2. Bases are the opposite of acids. Acids and bases neutralize each other.
- 3. Acids come from CO2, acid functional groups on O.M. roots, acid rain, Al3+
- 4. The two cations considered acidic in soils are H⁺ and Al³⁺.
- 5. Al3+ splits water and take hydroxides, leaving H+ in soil solution => acid.
- 6. There are 2 types of soil acidity: active and exchangeable.
- 7. Active acidity is the hydrogen ions in soil solution (measure with a pH meter)
- 8. Exchangeable acidity is associated with AI and H on exchange sites.
- 9. Measurement of total soil acidity requires displacement of exchangeable acidity
- 10. Exchangeable acidity can be many times greater than active acidity in soils
- 11. Base saturation refers to the percentage of the total CEC occupied by base cations
- 12. High base saturation indicates greater numbers of beneficial cations on exch. Sites
- 13. Acid soils tend to have low base saturation.
- 14. CEC alone is not necessarily a good indicator of fertility.
- Florida soils tend to be acidic because of high rainfall that is somewhat acidic. Acid cations from rainfall displace base cations.
- 16. Soils are able to resist changes in pH soil buffering.
- 17. Soils resist changes in pH because of cation exchange.
- If acid is added to soil, some of the H* will leave the active acidity pool to occupy exchange sites
- If a base like NaOH is added to soil, OH⁻ will neutralize acid, but Na⁺ will displace acid from exchange sites. pH will not decrease as much as expected
- 20. We typically increase the pH of soil using compounds like CaCO₃.
- 21. If CaCO₃ is added to soil, CO₃² neutralizes active acidity increasing pH, but Ca²⁺ displaces new acid from exchange sites back into soil solution. pH will not increase as much as expected.
- 22. Therefore, to properly manage soil pH we must consider exchangeable acidity which buffers pH changes.
- 23. The ability of a soil to buffer pH is related to CEC and base saturation.

Purpose

The Language of Soils

Loamy, siliceous, hyperthermic grossarenic paleudult

Morphology and Classification of Soils

Based on physical and chemical properties

Color Texture Structure Density/Porosity Water Movement Reactivity of mineral and organic colloids Soil acidity and pH

	ark/grayish-black color range vs. Gray colors	
Texture	Sandy vs. Clayey	
Structure	Good vs. Poor Structure	
Density	Porosity, organic matter, compaction	
Water	Pore sizes, total porosity, water movement	
Reactivity	Cation exchange capacity	
Acidity	Plant tolerances, buffering, base saturation	
All are used to classify soils		

Soil Formation Revisited

Factors Affecting Soil Formation

The 5 soil forming factors Climate Organisms/Vegetation Parent material Topography Time

Climate

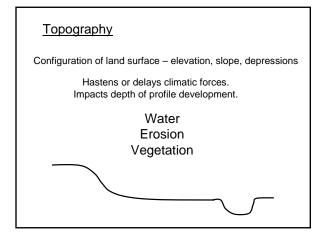
Temperature and Precipitation

Rates of chemical, physical, biological processes

Cold climates - weak to modest profile development

Warm, humid climates - strong, deep profile development

Organisms/Vegetation

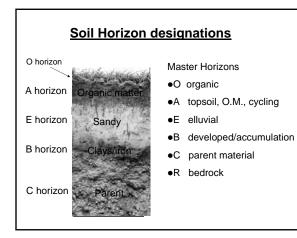

O.M. accumulation Profile mixing Nutrient cycling Soil structure Soil solution (% B.S.)

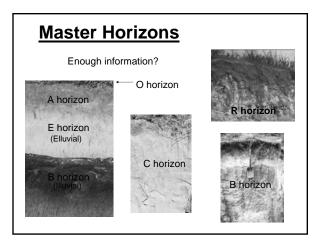
Parent Material

Affects texture, vegetation, nutrients clay mineralogy, CEC

Deposition

Colluvial (gravity) Alluvial (streams) Marine (oceans) Lacustrine (lakes) Glacial (ice) Eolian (wind) silt and clay


<u>Time</u>


Duration of weathering and all other factors

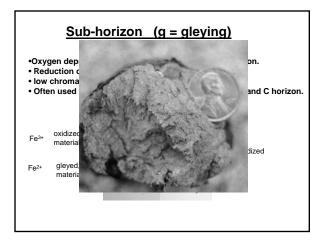
Glacial Deposits Alluvial vs. upland Coastal plains

Additions, losses, translocation, transformation

Soil Horizons: first step in classification

Sub-horizon designations

Sub-horizon designations


- b buried horizon
- c concretions d root restrictive
- g gleying h illuvial organic matter k - carbonates
- m cementation
- o oxic
- p plowing/disturbance
 q secondary silica
 r soft bedrock (saprolite)

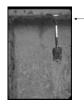
- son beautor (saprolite)
 s illuvial sesquioxides and O.M.
 t clay accumulation
 v plinthite
 w development of color/structure x - fragipan

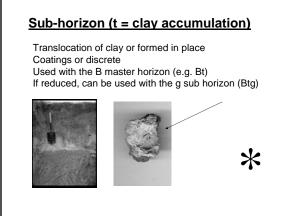
Sub-horizon designations

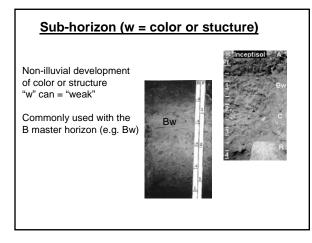
- g gleying h illuvial organic matter
- p plowing/disturbance
- t clay accumulation
- w development of color/structure

o – oxic

Sub-horizon (h = organic accumulation)


- Accumulation of illuvial organic matter-metal complexes
- Coatings on sand and discrete particles
- h = "humic"
- value and chroma approximately 3 or less
- Used with the B master horizon (e.g. Bh horizon)




Sub-horizon (p = plowed)

Disturbed surface horizon (cultivation, pasture, forestry) Used with the A master horizon (e.g. Ap horizon)

Ap horizon

Sub-horizon (o = oxic horizon)

Low activity clays Few weatherable materials Little rock structure Fe and AI oxides

Sub-horizon designations

- g gleying h illuvial organic matter
- p plowing/disturbance
- t clay accumulation w development of color/structure

o – oxic

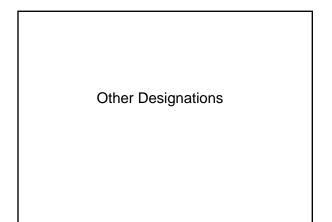
Sub-horizons and Organic Matter

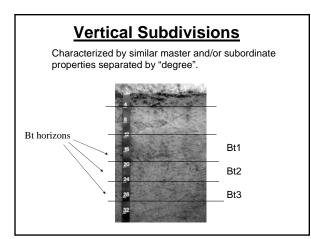
Sub-horizon (a, e, i)

Denotes the degree of organic matter decomposition in the O horizon.

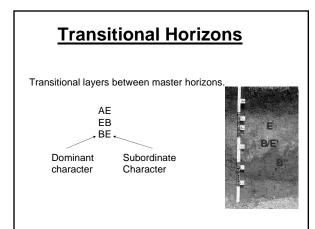
Oa – highly decomposed (sapric) Oe – moderately decomposed (hemic) Oi – slightly decomposed (fibric)

Sapric -most decomposed, low plant fiber, low water content Hemic - intermediate decompostion Fibric - least decomposed, recognizable fibers


Summary


Master: O, A, E, B, C, R

Sub horizon symbols: g, h, p, t, w and a,e,i


Examples: Oa, Oe, Oi

Bt Bg Btg Bw Ap

_	
<u>Synthesis</u>	Ар
	AE
	E
	Bh
	Btg1
	Btg2

